Surface-Induced Hydrogelation Inhibits Platelet Aggregation Surface-Induced Hydrogelation Inhibits Platelet Aggregation

最小化 最大化

Surface-Induced Hydrogelation Inhibits Platelet Aggregation

J. Am. Chem. Soc., 2013, 135, 266–271

Wenting Zheng, Jie Gao, Lijie Song, Chongyi Chen, Di Guan, Zhihong Wang, Zhibo Li*, Deling Kong*, and Zhimou Yang*

We demonstrate that a tripeptide hydrogelator, Nap-FFG, can selectively self-assemble at the surface of platelets, thus inhibiting ADP-, collagen-, thrombin- and arachidonic acid (AA)-induced human platelet aggregations with the IC50 values of 0.035 (41), 0.14 (162), 0.062 (68), and 0.13 mg/mL (148 μM), respectively. Other tripeptide hydrogelators with chemical structures of Nap-FFX (X = A, K, S, or E) could not or possessed less potencies to inhibit platelet aggregations. We observed higher amounts of Nap-FFG at the platelet surface by the techniques of LC-MS and confocal microscopy. We also observed self-assembled nanofibers around the platelet incubated with the Nap-FFG by cryo-TEM. The ζ potential of Nap-FFG treated platelets was a little bit more negative than that of untreated ones. The amount of Nap-FFG at the surface of NIH 3T3 cells was much less than that of platelets. These observations suggested that Nap-FFG could selectively self-assemble through unknown ligand–receptor interactions and form thin layers of hydrogels at the surface of platelets, thus preventing the aggregation of them. This study not only broadened the application and opened up a new door for biomedical applications of molecular hydrogels but also might provide a novel strategy to counteract infection diseases through selective surface-induced hydrogelations at pathogens, such as bacteria and virus.